12161 MATHEMATICS (New Book) PART-II

NOTE: There are three sections of this paper. Carefully read the instructions for each section and attempt accordingly. Attempt all questions of Section-A and return it to the Superintendent within given time, even if you have not attempted any question. Select the correct choice and write only A, B, C or D, whichever is appropriate, in the answer box. No marks will be awarded for cutting/erasing or overwriting

SE	CT	10	N-A
~		1.00	

Time	e: 20 Minutes	Marks: 20
1.	F(x) is anti derivative of f(x) if F'(x) = A) f(x), B) $f(x^2)$, C) $f(\frac{x}{2})$, D) none of these	······
2.	Solution set of $(x-3)e^x=0$ is A) {3,0}, B) {3}, C) {0}, D) none of these	·······
3.	The derivative of $x^2 + y^2 = a$ is	[,]
4,	If $f(x) = \sqrt{x}$ then $f'(0) = \dots$ A) -1 , B) 0, C) ∞ , D) none of these	[]
5.	A function $f(x)$ is strictly increasing on (a,b) if A) $f'(x) < 0$, B) $f'(x) = 0$, C) $f'(x) > 0$, D) none	[]
6.	The graph of a function $f(x)$ is concave upward on (a,b) if	=0,
7.	A suitable substitution for $\sqrt{a^2 + x^2}$ in the integration method of substitution is	9, 1
8.	$\int \frac{\sec^2 x}{\tan x} dx = \dots$ A) $\frac{\sec^3 x}{3} + c$, B) $\ln \cot x + c$, C) $\ln \tan x + c$, D) none of these \dots	
9.	The distance from the origin (0(0,0) to point p(x ₁ ,y ₁) is	
10.	The equation of the y-axis is A) $y=0$, B) $y=x$, C) $x=0$, D) none of these	
11.	Any line equation in two variables that passes through the origin is called a equation. A) homogenous, B) quadratic, C) non-homogenous, D) joint	[]
12.	The ratio of vertical rise to horizontal run is called	
13.	If a point P(x,y) is out sides of the circle then there will be tangents. A) 1, B) 2, C) 0, D) 3	
14.	An angle in a semicircle is a angle. A) acute, B) obtuse, C) right, D) none of these	
15.	In hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, $c^2 = \dots$ A) $a^2 - b^2$, B) $a^2 + b^2$, C) $b^2 - a^2$, D) none of these	
	If e>1, then the conic is A) circle, B) ellipse, C) parabola, D) hyperbola	
17.	The highest order derivative occurring in the differential equation is of the differential equation A) degree, B) order, C) solution, D) both A&C	on.
	For $\frac{ds}{dt} = 30$, $S(0) = 0$ then $S(t) = \dots$ A) $-32t$, B) $30t + A$, C) $-16t$, D) $32t$	•
19.	The function $f(x,y) = 2xy + y^2$ is homogenous function of degree A) 0, B) 1, C) 2, D) none	
20.	The root of the function lie in the inverted $\{a,b\}$ if	

12161 MATHEMATIC (New Book) PART-II

Time: 2 Hours 40 Minutes

SECTION-B

Marks: 50

- Attempt any ten of the following. All carry egual marks.
 - i. Evaluate lim sec x 1 x sec x
 - ii. Differentiate $y = \frac{5}{2x-4}$ by first principle rule.
 - iii. Find the critical values of the function $f(x) = 3x^{4/3} 12x^{1/3}$
 - iv. Evaluate $\lim_{t\to 2} [(2i-tj+e^tk)\times (t'i+4\sin tj)]$
 - v. Evaluate definite integral $\int_{-1}^{7} \frac{x}{\sqrt{x+2}} dx$
 - vi. Find the perpendicular from a point P(3, -4) to a line 4x 3y + 6 = 0
 - vil. For what value of n the line 3x + 4y + n = 0 touches the circle $x^2 + y^2 4x 6y 12 = 0$
 - viii. Find an equation for a parabola whose focal chord has length 6, if it is known that the parabola has focus (4,-2) and its directrix is parallel to the y-axis.
 - ix. Determine the equation of the orthogonal trajectory of the family of the curve exsiny = c
 - x. Find the partial derivatives f_x and f_y for $f(x,y) = \sin x^2 \cos y$
 - xi. Approximate by trapezoidal rule the definite integral $1 = \sqrt{1 + x^2} dx$ in n = 6 subinterval.
 - xil. Evaluate the integral $\int \sqrt{a^2 x^2} dx$
 - xiii. Differentiate the function $f(x) = \log_{10} \sqrt{(x^2 7x)} + x^3$

SECTION-C

Marks: 30

NOTE: Attempt any three of the following questions. All questions carry equal marks.

- 2. i. Evaluate the indefinite integral $\int \frac{2x+5}{x^2+4x+5} dx$
 - ii. Find a joint equation of the straight line that passes through the origin and perpendicular to the lines represented by $2x^2-5xy+3y^2=0$
- 3. i. Solve the equation for the unknown x: $\log_b x + \log_b (x-4) = \log_b 21$
 - ii. Use Maclaurin's series to approximate the value of a function $f(x) = \ln_a (1+x)$ at a point $x_0 = 0$
- Write the equation of the hyperbola with vertices at (-3,1), (-3,3) and that passes through the point with coordinates (0,4)
 - ii. Find the general solution of the differential equation $e^x \frac{dy}{dx} + y^2 = 0$
- 5. I. Find the equation of the tangents to the circle $x^2 + y^2 = 25$ which are parallel to the straight line 3x + 4y + 3 = 0
 - ii. Verify Euler's theorem for the function $z = f(x,y) = ax^2 + 2hxy + by^2$