		KT-XII-17	01 r-2	 		
ig.	of Supdl	Physics (Pa	art II)	Roll No		
	·		1:	in Ma		
	Code = M	***************************************	****		.,	
	allowed: 3 Hrs	Physics (Part Fresh / Reapp	: – II) ear			Mark
	There are three sections of the partendent within the given time. No	aper, A. B & C. Altern marks will be awarded	npt Section – for cutting, ϵ	 A on the sar erasing or over 	ne paper and re writing, Mobile p	eturn it i Shone et
0	wed in the examination hall. 20 Mins	Section "A				Mark
•	Write the correct option i.e. A			ovided oppos	ite each part.	,
	Coulomb per volt is equal to .					•
	A. Ampere B.	Newton	C. Energy		D Farad	
	The energy stored in electric	field is equal to	,.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		D. C ² V ² /2	
	A. $\frac{Q^{1}}{2C}$ B.	$\frac{Q^2}{2V}$	c. $\frac{2C}{O^2}$. D. C. V 12	
	2C	2V	Q'			
	When the temp of a ohmic co				D. Diam.	مام
		Increases	C. Consta	nt	D. Plays 110 f	ole
	Voll-ampere is unit of	Energy	G. Power		D. Time	
	When a conductor is placed p			ne magnitude		lic forc
	will be					
		-	C. ILB		D. I/LB	
	In order to minimize power lo	sses due to eddy cu	rrent in trai	nstormer, the	core is lamina	ted wi
A	A. Conductor B.	Semi-conductor	C. Insulati	on D.	Super conduc	юг
	he peak values of a sine wa					
1	A, Single B.	Twice	C. Zero		D. Both A	& C I
	The wave length of the visible A. 700 nm to 900nam B. 5	e region ranges fron 00nm to 900nm		to 700nm	D.500 nm to 7	700nm
	Which of the following is not a A. Cobalt B. Nick		stance? - C. Antimo	ny 104	D. Iron	
	The device which converts A.C into D.C is called					
	A traveler on a train with sp 1.0sec as measured by the track, the event takes	peed of 0.8c, picks train traveler. As o	up and op bserved by	pen a news a person st	paper the eve randing by the	nt tak e side
	A. 1.6sec B. 1.9	sec C. 1.	8sec		D. 1.7sec	
	Balmer series occurs for tran A. $n = 1$ B. $n = 2$	sition ending at	ບ. ຄ = 3		D, n = 4	:
	The process in which no char A, α-emission B. Protor	nge in mass numbe n emission	r occurs is a C. β-emis		D Neutron en	nission
	Which one of he following is t	rue relation for capa	acitor?			_
	A. $\epsilon_r = C_{\text{med}}/C_{\text{vc}}$ B. $\epsilon_r = C_{\text{med}}$	vac/Cmed	C. €, = C,	vac X Cmed	D. $\in_{r} = C_{mad}$	- C _{vac}
	Vhen a charge particle move Minimum B	parallel in to the m . Maximum			ce on it will be D. Constant	
	In Fleming's right hand rule th A. Direction of B. Directi magnetic field condu	on of motion of		on of induced	D. Direction force	on of
	The maximum K.E of photo e A. Speed B. Velocity	lectron is related to C. Stopping po			photo electron	
	When an electron in an atom A. K.E decreases, P.E increas C. K.E increases, P.E increas	ses	B. K.E inc	rbit its reases, P.E.c creases, P.E	lecreases	•

Time: 2:40 Hours

KT-XII-1701 P-256 Physics (Part - II)

Fresh/Reappear

Section "B"

Marks: 40

Q.2 Attempt any TEN parts. Each parts carries equal marks.

- i. What is the difference between electric potential energy and electric potential at a distance "r" from charge Q? Write the mathematical form.
- ii. Explain the statement "under constant physical conditions, the resistance "V/I" is a constant, independent for Vor I and their direction".
- III. How the direction of induced current is determined?
- Iv. Why the galvanometer attached with a coil does not show deflection even that a magnet has placed stationary near the coil and the flux linking over the coil?
- v. Why the back e.m.f must be smaller than the applied potential difference? Explain.
- vi. What is the stress-strain curve and define the plastic deformation?
- vil. What is the difference between forward bias and reverse bias of diode?
- viii. What is the application of photoelectric effect in the function of solar cell? Explain with example.
- ix. If a body contain "n₁" electrons and "n₂" protons then what is the total net charge on the body?
- x. The energy of electron in quantized orbit is given by $E_n = -E_0/n^2$, what is the meaning of "-ve" sign here and calculate energy for lowest stationary energy state.
- xi. Describe the relation what the given equation shows? $r = \sqrt{\frac{2Vm}{B^2q}}$ where "V" B, and "q" stands for voltage, magnetic field and charge respectively 'm' is the mass of ions.
- xii. If speed of light is constant, then why it decreases while passing through glass?
- xiii. The resistance of wire is 5Ω . If its length is doubled, what will be its new resistance?

Section "C"

Marks: 27

Note: Answer any THREE questions. Each question carries equal marks.

- Q.3.a. What is induced emf? State and explain Lenz's law, and show that Lenz's law is consistent with the law of conservation of energy.
 - b. At what rate the flux will change if a current of 1.2mA flows through the conductor of single loop connected with a 10Ω resistor (across its ends).
- Q.4.a. State and explain Gauss's law and prove that $\phi_E = Q/\epsilon_0$ for a closed surface.
 - b. What is the electric potential energy of a 7nC charge that is 2cm from a 20nC charge?
- Q.5.a. Derive relation for power loss in a resistor and inductor when A.C is passing through it?
 - b. An A.C circuit consists of a pure resistance of 200Ω is connected across A.C supply of 220V, 50Hz. Calculate (a) current (b) power consumed in the resistor.
- Q.6.a. Prove that radii of stationary orbits of electron in hydrogen atom are quantized $(r_0 = n^2 r_1)$.
 - b. Draw the labeled diagram for energy levels for emission spectrum of hydrogen between n=1,2,3 $_{max}\infty$ and E_{max}