INTERMEDIATE PART-I (11th CLASS)

MATHEMATICS PAPER-I GROUP-I

TIME ALLOWED: 2.30 Hours

SUBJECTIVE

MAXIMUM MARKS: 80

NOTE: - Write same question number and its part number on answer book, as given in the question paper.

SECTION-I

2. Attempt any eight parts. $8 \times 2 = 16$

- Write Closure Law and Commutative Law of Multiplication of Real Numbers. (i)
- Show that $z^2 + (\bar{z})^2$ is a real number, $\forall z \in c$. (ii)
- Show that $z.\overline{z} = |z|^2$, $z \in c$. (iii)
- (iv) Define a semi - group.
- Write number of elements of sets $\{a, b\}$ and $\{\{a, b\}\}$. (v)
- If $A = \{1, 2, 3, 4\}$, then write a relation in A for $\{(x, y) / x + y = 5\}$ (vi)
- Define Symmetric and Skew Symmetric Matrix. (vii)
- If the matrix $\begin{bmatrix} 4 & \lambda & 3 \\ 7 & 3 & 6 \\ 2 & 3 & 1 \end{bmatrix}$ is symmetric, then find value of λ .
- Without expansion, show that $\begin{vmatrix} \alpha & \beta + \gamma & 1 \\ \beta & \alpha + \gamma & 1 \\ \alpha + \beta & 1 \end{vmatrix} = 0$ (ix)
- Solve $x^{\frac{1}{2}} x^{\frac{1}{4}} 6 = 0$ (x)
- Show that the polynomial (x-1) is a factor of polynomial $x^2 + 4x 5$ by using factor theorem. (xi)
- Discuss nature of roots of equation $x^2 + 2x = 0$. Attempt any eight parts. (xii)

3.

 $8 \times 2 = 16$

- Resolve $\frac{1}{x^2-1}$ into partial fractions. (i)
- Write the first four terms of the sequence, if $a_n = (-1)^n n^2$. (ii)
- How many terms of the series -7 + (-5) + (-3) + ---- amount to 65? (iii)
- (iv) Find the geometric mean between -2i and 8i.
- Find the sum of the infinite geometric series $4 + 2\sqrt{2} + 2 + \sqrt{2} + 1 + -----$ (v)
- Write two important relations between arithmetic, geometric and harmonic means. (vi)
- Write the following in factorial form (n+2)(n+1)(n)(vii)
- Find the value of n, when $C_{12} = C_6$. (viii)
- (ix) A die is rolled. Find the probability that top shows 3 or 4 dots.
- Use mathematical induction to verify for n = 1, 2(x) $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{2^{n-1}} = 2 \left[1 - \frac{1}{2^n} \right].$
- Calculate (9.98)4 by means of binomial theorem. (xi)
- Expand $\frac{\sqrt{1+2x}}{1-x}$ up to 4 terms, taking the values of x such that the expansion in each case is valid.

4. Attempt any nine parts.

- Convert the angle 54° 45' into radians. (i)
- Find r, when $\ell = 56 \, cm$ $\theta = 45^{\circ}$ in a circle. (ii)
- Prove that $\frac{1}{1 + Sin\theta} + \frac{1}{1 Sin\theta} = 2 Sec^2 \theta$ (iii)
- If $Cos\alpha = \frac{3}{5}$, find the value of $Cot\alpha$, where $0 < \alpha < \frac{\pi}{2}$ (iv)
- If α , β , γ are angles of a triangle $\triangle ABC$, then prove that $Sin(\alpha + \beta) = Sin\gamma$ (v)

(2)

- Prove that $Sin3\alpha = 3Sin\alpha 4Sin^3\alpha$ (vi)
- Find the period of $\tan \frac{x}{3}$ (vii)
- (viii) State the Law of Cosines.
- Find the area of $\triangle ABC$ with a = 200, b = 120 included angle $\gamma = 150^{\circ}$ (ix)
- Find R if a = 13, b = 14, c = 15 are the sides of triangle $\triangle ABC$. (x)
- Find the value of $Sin\left(Cos^{-1}\frac{\sqrt{3}}{2}\right)$ (xi)
- Solve the equation $Sin x = \frac{1}{2}$ (xii)
- Solve Sin x + Cos x = 0

SECTION-II

NOTE: - Attempt any three questions.

 $3 \times 10 = 30$

5

5

- Prove that all non-singular matrices of order 2/2 over real field form a non-abelian group under multiplication.
- Find the value of λ for which the following system does not possess a unique solution. (b) Also solve the system for the value of λ .

$$x_1 + 4x_2 + \lambda x_3 = 2$$

 $2x_1 + x_2 - 2x_3 = 11$
 $3x_1 + 2x_2 - 2x_3 = 16$

- Show that the roots of the equation $x^2 2\left(m + \frac{1}{m}\right)x + 3 = 0$, $m \neq 0$, are real. 5 6.(a)
 - Resolve $\frac{x^4}{1-x^4}$ into partial fraction. 5 (b)
- Sum the series: $\frac{1}{1+\sqrt{x}} + \frac{1}{1-x} + \frac{1}{1-\sqrt{x}} + ---- \text{ to } n \text{ terms.}$ 5 7.(a)
 - Determine the middle terms in the expansion of $\left(\frac{3}{2}x \frac{1}{3x}\right)^{11}$ 5 (b)
- 5 8.(a)
- Prove the following identity: $\sin^6\theta \cos^6\theta = (\sin^2\theta \cos^2\theta)(1 \sin^2\theta\cos^2\theta)$ Prove that: $\frac{\sin\theta + \sin 3\theta + \sin 5\theta + \sin 7\theta}{\cos\theta + \cos 3\theta + \cos 5\theta + \cos 7\theta} = \tan 4\theta$ 5
- 9.(a) Prove that $(r_1 + r_2) Tan \frac{\gamma}{2} = c$ (with usual notations) 5
- (b) Prove that $Cos^{-1}\frac{63}{65} + 2Tan^{-1}\frac{1}{5} = Sin^{-1}\frac{3}{5}$ 5

Paper]		2018 (A)		Roll No:	
Numbe	er: 21	91			TE PART-			
	HEMATIC		2,074,27 (2,075)		ECTIVE	1	MAXIMUN	OWED: 30 Minute MMARKS: 20
think i Cuttin given i	s correct, fill g or filling tv in objective ty t filled. Do i	that bub yo or mo	ble in fron re bubbles tion paper	t of that q will result and leave	uestion num in zero mar others blank	ber. Use t k in that q . No cred	narker or po uestion. Att t will be aw	ne choice which you en to fill the bubbles. empt as many questic arded in case BUBBL
(1)	If n is prin (A) Rational	number	(B) Whole		(C) Natural	number (D) Irrational	number
(2)	If $a, b \in G$, (A) $a^{-1}b^{-1}$				$(C) \frac{1}{ab}$		_{TD)} -1	
	If $A = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$				uo		440	4 (D) 3
	If $A = \begin{bmatrix} 4 \\ A \end{bmatrix}$ If $A = \begin{bmatrix} a_{ij} \\ A \end{bmatrix}$				- (A)	+1 (E)-1 (C)	-4 (D)3
(4)	$H A = [a_i]$	J _{3×3} , ti	ten $ KA =$		(C) K2 A	- 3	(D) $K^3 A $	
(5)								B) - 10 (C) 8 (D) -
(6)	Nature of the	roots of	the equation	$2x^2 + 5$ Rational ar	x - 1 = 0:- ad equal (C)	Imaginary	(D) Ratio	nal and unequal
(7)	The type of	rational f	raction $\frac{3x^2}{x}$	$\frac{-1}{-2}$ is:-	(A) Propo	er (B) Im	proper (C)	Polynomial (D) Identi
(8)	In geometric	sequenc	e nth term	is				
	(A) $a_1 + (n$	-1)d	(B) $\frac{n}{2}$	$2a_1 + (n -$	1) d] (0	$\frac{a_1}{1-r}$	(D) $a_1 r^{n-1}$	
(9)	For any seri	es $\sum_{k=1}^{n} K$	=		(C) nor+	n	² ()	1)2
(10)	(A) $\frac{n(n+1)}{n(n+1)}$	1)(2n + 1) 6	$\frac{1}{2}$ (B) $\frac{n}{2}$	$\frac{(n-1)}{2}$ $A = P(R)$	(C) $\frac{n(t)^{\frac{1}{2}}}{5}$	nobability	$(D) \frac{n}{4} \frac{(n+1)^2}{4}$ $P(A \cap B) = 0$	<u>1)</u>
(10)	(A) $\frac{1}{9}$		(B) $\frac{1}{3}$	a)-1 (b	(C) $\frac{1}{6}$		(D) 1	
			-		· ·		(4-710 -4	
(11)	$ \text{If } {}^nC_8 = {}$	C_{12} , whe	re C stands	for comb	(C) 8	arue of n	(D) 12	
(12)	The inequal	ity $n^2 >$	n+3 is tr	ae for:-	(A) n ≥ 2	(B) n ≥ 1	(C) n≥	0 (D) n≥1
(13)	The coeffic	ient of the	a last term i	n the expa	nsion of (x -	- y)5 is:-	(A) - 1	(B) 1 (C) 5 (D)
(14)	Sin2 (50)	+ Cos2 (5	iθ)=	ACTIVITY TO STATE OF THE	(A) 5	(B) 2	(C) 1	(D) 10
(15)	For double (A) 1-2Si	angle ide	ntities Sin	$2\alpha =$	(C) 2Cos ²			
(16)		n α et nositiv	e number 2	for which	ch f(x+p)	= f(x) i	s called:-	om a
(17)	(A) Index		(B) Doma	in	(C) Coefficients r_2 is equ	cients		
18 182	$(A) \stackrel{\Delta}{=}$				(C) $\frac{\Delta}{s-h}$		(D) $\frac{\Delta}{s - c}$	
(18)	If AABC		13		B - B			ons, the true statemen
	$(A) a^2 = b$	$b^2 + c^2$	(B) $b^2 =$	a^2+c^2	(C) $c^2 = a$	$a^2 + b^2$	(D) $a^2 = b$	$c^2 = c^2$
(19)				$x \le 1$	(C) $-\pi/2$	$\leq x \leq \pi/2$	(D) $-\pi/2$	$x < \pi/2$
(20)	If $Sin x = -$							0.5
					(C) $\pi/_3$,			
					13(0	bj)(23)-2	018(A)-2100	0 (MULTAN)

INTERMEDIATE PART-I (11th CLASS)

MATHEMATICS PAPER-I GROUP-II

TIME ALLOWED: 2.30 Hours

SUBJECTIVE

MAXIMUM MARKS: 80

NOTE: - Write same question number and its part number on answer book, as given in the question paper.

SECTION-I

2. Attempt any eight parts.

 $8 \times 2 = 16$

- (i) Prove that $\frac{7}{12} \frac{5}{18} = \frac{-21 10}{36}$ by justifying each step. (writing each property)
- (ii) Simplify the following (5, -4) + (-3, -8)
- (iii) Prove that $\bar{z} = z$ if and only if z is real.
- (iv) Write two proper subsets of the set of real numbers R.
- (v) Construct truth table for the following $(p \land \neg p) \rightarrow q$.
- (vi) For a set $A = \{1, 2, 3, 4\}$, find the relation $R = \{(x, y) \mid x + y < 5\}$ in A. Also state the domain of R.
- (vii) Find 'x' and 'y' if the matrices are as $\begin{bmatrix} x+3 & 1 \\ -3 & 3y-4 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ -3 & 2 \end{bmatrix}$
- (viii) If $A = [a_{i,j}]_{3 \times 4}$, then show that $I_3 A = A$
- (ix) Without expansion show that $\begin{vmatrix} 1 & 2 & 3 \\ 5 & 6 \\ 7 & 9 & 9 \end{vmatrix} = 0$
- (x) Solve the following equation by factorization x(x+7) = (2x-1)(x+4)
- (xi) Show that $x^3 y^3 = (x y)(x \omega y)(x \omega^2 y)$, where ω is a cube root of unity.
- (xii) Use remainder theorem to find the remainder, when $x^2 + 3x + 7$ is divided by x + 1.

Attempt any eight parts.

 $8 \times 2 = 16$

- (i) Define a Partial Fraction.
- (ii) If $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$ are in arithmetic progression, show that $b = \frac{2ac}{a+c}$
- (iii) Find the arithmetic mean between $3\sqrt{5}$ and $5\sqrt{5}$.
- (iv) If the series $y = \frac{x}{2} + \frac{x^2}{4} + \frac{x^3}{8} + ---- \infty$ and 0 < x < 2. Then prove that $x = \frac{2y}{1+y}$
- (v) If 5 is Harmonic mean between "2" and "b". Find "b".
- (vi) Prove that $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$
- (vii) How many 5 digits multiples of "5" can be formed from the digits 2, 3, 5, 7, 9 when no digit is to be repeated?
- (viii) Find n if ${}^{n}C_{5} = {}^{n}C_{4}$ (C is used for combination)
- (ix) What is the probability that a slip of numbers divisible by 4 is picked from slips bearing numbers 1, 2, 3, ____, 10?
- (x) Use Binomial Theorem, find (21)5.
- (xi) Expand up to four terms $(8-2x)^{-1}$
- (xii) If x be so small that its square and higher powers can be neglected. Then prove $\frac{\sqrt{1+2x}}{\sqrt{1-x}} \approx 1 + \frac{3x}{2}$

4. Attempt any nine parts.

- (i) Find " ℓ " (arc length) when r = 18mm and $\theta = 65^{\circ} 20'$.
- If $\sec \theta < 0$ and $\sin \theta < 0$, in which quadrant terminal arm of '\theta' lies. (ii)
- Show that $Sin^2 \frac{\pi}{6} + Sin^2 \frac{\pi}{3} + tan^2 \frac{\pi}{4} = 2$ (iii)
- (iv) Prove that $Sin(180^{\circ} + \theta)$ $Sin(90^{\circ} - \theta) = -Sin\theta Cos\theta$
- (v) Find the value of Sin15°
- Prove that $\tan 2\theta = \frac{2 \tan \theta}{1 \tan^2 \theta}$ (vi)
- (vii) Find the period of $\cos x/6$
- In a right $\triangle ABC$, if b = 30.8, c = 37.2 and $\gamma = 90^{\circ}$. Find α and β (viii)
- Find the area of $\triangle ABC$ in which b = 21.6, c = 30.2 and $\alpha = 52^{\circ} 40'$. (ix)
- Define "Inscribed Circle". (x)
- Show that $Cos(Sin^{-1}x) = \sqrt{1-x^2}$ (xi)
- Solve the equation $Sin x = \frac{1}{2}$ where $x \in [0, 2\pi]$ (xii)
- (xiii) Solve the equation $4\cos^2 x - 3 = 0$, where $x \in [0, 2\pi]$

NOTE: - Attempt any three questions SECTION-II

 $3 \times 10 = 30$

- Show that the set $\{1, \omega, \omega^2\}$, (where $\omega^3 = 0$, is an abelian group w.r.t. ordinary multiplication. 5
- Show that the set $\{1, \omega, \omega^2\}$, (where ω)

 Without expansion verify that $\begin{vmatrix}
 -a & 0 & c \\
 0 & a & -b \\
 b & -c & 0
 \end{vmatrix} = 0$ (b) 5
- Resolve $\frac{x^2+1}{x^3+1}$ into Partial Fraction. 6.(a) 5
 - Solve the equation $\sqrt{3x^2 7x 30} \sqrt{2x^2 7x 5} = x 5$ (b) 5
- Find the value of n so that $\frac{a^n + b^n}{a^{n+1} + b^{n-1}}$ may be the Arithmetic Mean between a and b. 1 + 3 + 17.(a)
 - Use mathematical induction to prove that the following formula holds for every positive (b)

$$\frac{1}{2 \times 5} + \frac{1}{5 \times 8} + \frac{1}{8 \times 11} + ---- + \frac{1}{(3n-1)(3n+2)} = \frac{n}{2(3n+2)}$$

- Prove that $\sin^6 \theta + \cos^6 \theta = 1 3\sin^2 \theta \cos^2 \theta$ 8.(a) 5
- Prove that $\sin \frac{\pi}{9} \sin \frac{2\pi}{9} \sin \frac{\pi}{3} \sin \frac{4\pi}{9} = \frac{3}{16}$ (b) 5
- The sides of a triangle are $x^2 + x + 1$, 2x + 1 and $x^2 1$. 9.(a) Prove that the greatest angle of the triangle is 120° 5
 - Prove that $Cos^{-1}\frac{63}{65} + 2 tan^{-1}\frac{1}{5} = Sin^{-1}\frac{3}{5}$ 5

Numl	c Code her: 2192	INTERMED	IATE PART-I	Roll No:
MAT	THEMATICS		JP-II SJECTIVE	TIME ALLOWED: 30 Minutes MAXIMUM MARKS: 20
think Cutti quest	is correct, fill that ng or filling two or ions as given in obj BUBBLES are not t .1	bubble in front of tha more bubbles will res ective type question p filled. Do not solve q	t question number sult in zero mark in saper and leave oth uestions on this sho	s A, B, C and D. The choice which you c. Use marker or pen to fill the bubbles. In that question. Attempt as many ners blank. No credit will be awarded in eet of OBJECTIVE PAPER.
(1)		erse of complex number		
	$(A)\left(\frac{\sqrt{2}}{\sqrt{7}},\frac{\sqrt{5}}{\sqrt{7}}\right)$	(B) $\left(\frac{-\sqrt{2}}{\sqrt{7}}, \frac{-\sqrt{5}}{\sqrt{7}}\right)$	$\left(C\right)\left(\frac{\sqrt{2}}{7},\frac{\sqrt{2}}{\sqrt{2}}\right)$	$\left(\frac{5}{7}\right) (D)\left(\frac{\sqrt{2}}{7}, \frac{\sqrt{5}}{7}\right)$
(2)	If A , B are two s	ets then $A \cap (A \cup B)$	equals:- (A) A (B) $A \cup B$ (C) B (D) ϕ
(3)		is called skew symme		
	(A) A	(B) <u>A</u>	(C) - A'	(D) - A
(4)	If $\begin{vmatrix} 2 & \lambda \\ 3 & 7 \end{vmatrix} = 2$, th	en λ =	(A) 1	(B) 2 (C) 3 (D) 4
(5)		on, remains unchanged		
	$(A) = \frac{-1}{r}$	(B) $\frac{1}{r^2}$	(C)-x	(D) $\frac{1}{y}$
(6)	$f(x) = 3x^4 + 4x^3$	+x-5 is divided by	x + 1 then remain	nder is:- (A) - 6 (B) 7 (C) 6 (D) - 7
(7) (8)	Types of rational fi		(A) Two	(B) Three (C) Four (D) Infinit (B) $\frac{a+b}{ab}$ (C) $\frac{2ab}{a+b}$ (D) $\frac{a-b}{ab}$
			$(A) {a} +$	-b (b) ab (c) $a+b$ (d) ab
(9)	If $a = -1$ and b	$= 5$ then $A \times H$ is e	equal to:- (wh	here A = A.M and H=H.M) (D) $\frac{2}{5}$ combination) (D) ${}^{\prime\prime}C_{r-2}$ here P is permutation) (D) 3 (B) $54x^2$ (C) $26x^2$ (D) x^4
702122	(11)	(B) 2	(C) 3	5
(10)	${}^{n}C_{r-1} + {}^{n}C_{r-2}$ i	s equal to:-	(where C is c	combination)
	(A) "C _{e-1}	(B) "+"C _{r-1}	$(C)^{n+1}C_{r-2}$	(D) "C _{r-2}
(11)	The value of n w	then $P_n = 11 \times 10 \times 9$	9 is:- (wh	here P is permutation)
(12)	In the expansion of	of $(3+x)^4$ middle term	n will be:- (A) 81	(D) 3 I (B) $54x^2$ (C) $26x^2$ (D) x^4
(13)		$n > 3^n + 4$ is valid if		
				(D) $n = -2$
(14)	The angle $\frac{\pi}{12}$ in	degree measure is:-	(A) 30° (B) 20" (C) 45° (D) 15°
(15)	$\tan(\pi - \alpha)$ equ		DAMAGE CONTROL	
(16)	(A) $\tan \alpha$ Period of $\cot 8x$	is:-		(D) $-\cot \alpha$
	(A) $\frac{\pi}{8}$	(B) $\frac{\pi}{4}$	(C) $\frac{\pi}{2}$	(D) π
(17)	In any triangle Δ	ABC, with usual notati	ion, $\sqrt{\frac{s(s-c)}{ab}}$ is	equal to:-
	(A) $\sin \frac{\gamma}{2}$	(B) $\cos \frac{\gamma}{2}$	(C) $\sin \frac{\alpha}{2}$	(D) $\cos \frac{\alpha}{2}$
(18)	Contract of the second	angle no angle is great	-	(2) 200 2
(10)	(A) 90°	(B) 30°	(C) 45°	(D) 60°
(19)	The value of sin	$-1\left(\cos\frac{\pi}{6}\right)$ is equal to:-		
	(A) $\frac{\pi}{2}$	(B) $\frac{3\pi}{2}$	(C) $\frac{\pi}{6}$	(D) $\frac{\pi}{3}$
(20)	If $\sin x = \frac{1}{2}$ then	x is equal to:-	- STAC	1.000
			$-\pi$	-5π
	(A) 6, 6	(B) $\frac{-\pi}{6}$, $\frac{-5\pi}{6}$	(C) <u>6</u>	(D) $\frac{-5\pi}{6}$
			15(Obj)(☆)-2018(A)-13000 (MULTAN)

BOARD OF INTERMEDIATE AND SECONDARY EDUCATION, MULTAN OBJECTIVE KEY FOR INTERMEDIATE ANNUAL/SUPPLY EXAMINATION, 2018

Name of S	Subject: Mathematics	Session: 2017 - 19	
Group	1st	Group: 2nd	

Q.	Paper Code	Paper Code	Paper Code	Paper Code
Nos	2191	2193	2195	2197
1	D	D	В	A
2	В	C	В	В
3	В	A	A.	D
4	D	В	C	С
5	C	D	В	A
6	A	\mathcal{D}	\mathcal{D}	В
7	В	В	C	B
8	D	B	A	A .
9	C	D	В	
10	A	C	\mathcal{D}	C B
11	B	Α	\mathcal{D}	D
12	В	В	B	C
13	h.	D	B	AL
14	C	C	D	В
15	BD	A	C	D
16	D	В	A	\mathcal{D}
17	C	В	A B	В
18	A	A.	D	В
19	В	C	C	D
20	D	В	A	С

Q.	Paper Code	Paper Code	Paper Code	Paper Code
Nos	2192	2194	2196	2198
1	D	В	A	0
2	A	A	В.	D
3	D	D	D	A
4	D	A	В	C
5	D	D	A	A
6	D	A	D	· B
7	A	D	B	D
8	C	D	A	B
9	A	D	B	A
10	B	D	A	D
11	D	A	D	B
12	B	C	A	A
13	A	A	D	B
14	D	B	A	A
15	B	D	D	D
16	A	B	D	A
17	OB	A	D	D
18	A	D	D	A
19	D	B	A	D
20	A	A	0	D