INTERMEDIATE PART-I (11th CLASS) ## MATHEMATICS PAPER-I GROUP-I TIME ALLOWED: 2.30 Hours SUBJECTIVE MAXIMUM MARKS: 80 NOTE: - Write same question number and its part number on answer book, as given in the question paper. #### SECTION-I Attempt any eight parts. $8 \times 2 = 16$ - (i) Express $(2 + \sqrt{-3})(3 + \sqrt{-3})$ in the form of a + bi and simplify. - (ii) Find the multiplicative inverse of (-4, 7) - (iii) Factorize $9a^2 + 16b^2$ - (iv) Define union of two sets and give an example. - (v) If A and B are any two sets then prove $(A \cup B)' = A' \cap B'$ - (vi) Define tautology and absurdity. - (vii) If A and B are non singular matrices then prove $(AB)^{-1} = B^{-1}A^{-1}$ - (viii) Find the inverse of matrix $A = \begin{bmatrix} -2 & 3 \\ -4 & 5 \end{bmatrix}$ - (ix) If $A = \begin{bmatrix} 0 & 2-3i \\ -2-3i & 0 \end{bmatrix}$ then show that A is skew-hermitian. - (x) Solve the equation $x^{\frac{1}{2}} x^{\frac{1}{4}} = 0$ - (xi) Using factor theorem show that (x + y) is a factor of $x^2 + 4x 5$ - (xii) The sum of a positive number and its reciprocal is $\frac{26}{5}$. Find the number. ## 3. Attempt any eight parts. $8 \times 2 = 16$ - (i) Define "Proper Rational Fraction". - (ii) Resolve $\frac{x^2+1}{(x+1)(x-1)}$ into Partial Fractions. - (iii) For the identity $\frac{2x+1}{(x-1)(x+2)(x+3)} = \frac{A}{x-1} + \frac{B}{x+2} + \frac{C}{x+3}$ Calculate the value of B. - (iv) Find the next two terms of the sequence: 1, 3, 7, 15, 31, ---- - (v) If the nth term of the A.P is 3n-1, find its first three terms. - (vi) Find the 11^{th} term of the geometric sequence: 1 + i, 2, $\frac{4}{1+i}$, --- - (vii) Insert two G. Ms. between 1 and 8. - (viii) Find the 12th term of the harmonic sequence: $\frac{1}{3}$, $\frac{2}{9}$, $\frac{1}{6}$, ---- - (ix) Find the value of n when ${}^{n}P_{4}: {}^{n-1}P_{3} = 9:1$ - (x) Prove the formula for n = 1 and n = 2: $1 + 4 + 7 + --- + (3n 2) = \frac{n(3n 1)}{2}$ - (xi) Calculate (0.97)3 by using binomial theorem. - (xii) Expand upto 4 terms: $(2-3x)^{-2}$ taking the values of x such that expansion is valid. - (i) Find θ , if $\ell = 1.5 \, cm$, $r = 2.5 \, cm$ - (ii) Prove $2\sin 45^{\circ} + \frac{1}{2}\cos ec 45^{\circ} = \frac{3}{\sqrt{2}}$ - (iii) Prove $(\tan \theta + \cot \theta)^2 = \sec^2 \theta \cos ec^2 \theta$ - (iv) Prove $\frac{\tan \alpha + \tan \beta}{\tan \alpha \tan \beta} = \frac{\sin (\alpha + \beta)}{\sin (\alpha \beta)}$ - (v) Prove $\frac{\tan\frac{\theta}{2} + \cot\frac{\theta}{2}}{\cot\frac{\theta}{2} \tan\frac{\theta}{2}} = \sec\theta$ - (vi) Prove $\sin\left(\frac{\pi}{4} \theta\right) \sin\left(\frac{\pi}{4} + \theta\right) = \frac{1}{2}\cos 2\theta$ - (vii) Find the period of $\cos 2x$. - (viii) Find the area of a $\triangle ABC$, if b = 37, c = 45, $\alpha = 30^{\circ}50'$ - (ix) Prove $R = \frac{abc}{4\Delta}$ - (x) Prove $r r_1 r_2 r_3 = \Delta^2$ - (xi) Prove $\cos(Sin^{-1}x) = \sqrt{1-x^2}$ - (xii) Find the solution of $\sec x = -2$ which lie in $[0, 2\pi]$ - (xiii) Find the values of θ satisfying the equation $2\sin\theta + \cos^2\theta 1 = 0$ #### SECTION-II ### NOTE: - Attempt any three questions. $3 \times 10 = 30$ 5 - 5.(a) Show that the set $\{1, w, w^2\}$ when $w^3 = 1$ is an abelian group w.r.t. ordinary multiplication. - (b) Find n so that $\frac{a^n + b^n}{a^{n-1} + b^{n-1}}$ may be A.M between a and b. - 6.(a) Find the inverse of the matrix $A = \begin{bmatrix} 2 & 5 & -1 \\ 3 & 4 & 2 \\ 1 & 2 & -2 \end{bmatrix}$ by using column operation. - (b) A die is thrown twice. What is the probability that the sum of dots shown is 3 or 11. - 7.(a) Find the condition that $\frac{a}{x-a} + \frac{b}{x-b} = 5$ may have roots equal in magnitude but opposite in signs. - (b) Use binomial theorem to prove that $1 + \frac{1}{4} + \frac{1.3}{4.8} + \frac{1.3.5}{4.8.12} + ---=\sqrt{2}$ - 8.(a) If $\cot \theta = \frac{5}{2}$ and the terminal arm of the angle is in the I quadrant, then find the value of $\frac{3 \sin \theta + 4 \cos \theta}{\cos \theta \sin \theta}$ - (b) Find the value of $\sin 18^{\circ}$ without using table or calculator. Hint: $5\theta = 2\theta + 3\theta = 90^{\circ}$ - 9.(a) Prove that $\frac{1}{2rR} = \frac{1}{ab} + \frac{1}{bc} + \frac{1}{ca}$ - (b) Prove that $Tan^{-1}\frac{1}{11} + Tan^{-1}\frac{5}{6} = Tan^{-1}\frac{1}{3} + Tan^{-1}\frac{1}{2}$ | Pape | er Code | | 2019 (A) | | |----------------------|---|--|--|---| | | ber: 2191 | The state of s | MEDIATE PART-I (| - A | | | THEMATICS | | ROUP-I
OBJECTIVE | | | thin
Cutt
give | k is correct, fill that
ting or filling two or
n in objective type on
not filled. Do not s | bubble in front
more bubbles w
question paper ar | of that question number
ill result in zero mark i | is A, B, C and D. The choice which you
r. Use marker or pen to fill the bubbles.
In that question. Attempt as many questions
No credit will be awarded in case BUBBLES
IVE PAPER. | | (1) | If $t = \sqrt{-1}$, then | $i^{14} =$ | | | | | (A) 1 | (B) −1 | (C) i | (D) $-i$ | | (2) | The symbol used | to denote a bicono | ditional between two prop | positions is: | | | (A) | (B) ^ | (C) ←→ | (D) V | | (3) | For a non singular | matrix A , if A | X = B, then $X =$ | | | | (A) $A^{-1}B$ | (B) BA⁻¹ | (C) $(AB)^{-1}$
= (A) 13 | (D) (BA) ⁻¹ | | (4) | If $A = \begin{bmatrix} 0 & 0 \\ 4 & 5 \end{bmatrix}$ | 1 , then M_{13} = 2 | = (A) 13 | (B) 0 (C) 10 (D) 7 | | (5) | | | | : (A) 2 (B) 4 (C) 6 (D) 8 | | (6) | If s = sum of roots | and p = product | of roots, then quadratic e | quation can be written as: | | | | | | | | (7) | $\frac{2x^2}{(x-3)(x+2)^2}$ | is a fraction: | Proper (B) Imp | $x + p = 0$ (D) $sx^{2} - sx + p = 0$
roper (C) Identity (D) Irrational
-1 (C) i (D) $-iB) -8 (C) \pm 8 (D) \pm 64$ | | 8) | If $a_n = (-1)^{n+1}$, | then $a_{26} =$ | (A) 1 (B) | -1 (C) i (D) $-i$ | | 9) | Geometric Mean b | etween 4i and - | 16i is: QA) 8 (I | B) -8 (C) ± 8 (D) ± 64 | | 10) | The factorial form | of $n(n-1)(n-1)$ | (n-2) (n-k+1) is: | | | | (A) | (B) $(n-1)!$ | (C) n! | (D) | | 11) | (n-r)!
When A and B a | re two disjoint ev | ents, then $P(A \cup B) =$ | (D) $\frac{n!}{(n-r+1)!}$ | | | 20,000,000,000,000,000,000 | re the majorin en | ems, then 1 (10 b) = | $P(A) - P(A \cap B)$ (D) $P(A) + P(B)$ | | 125 | | | | | | 12) | | | | (B) $n \neq 2$ (C) $n \geq 2$ (D) $n \leq 2$ | | 13) | In the expansion | | | | | 118 | | | rm (C) 3 rd last term | | | 14) | | | | is: (A) 30° (B) 60° (C) 90° (D) 120° | | 15) | | | : (A) I (B) II | (C) III (D) IV | | 16) | Range of the func | tion $y = \cos x$ is: | | | | | $(A) - \infty < x < \infty$ | (B) $-\infty < y$ | $<\infty$ (C) $-1 \le y \le 1$ | (D) $-1 \le x \le 1$ | | 17) | In a $\triangle ABC$ with u | sual notation $\sqrt{\frac{s}{s}}$ | $\frac{(s-a)}{ba} = (A) \sin a$ | $\frac{\alpha}{2}$ (B) $\cos \frac{\alpha}{2}$ (C) $\cos \frac{\beta}{2}$ (D) $\sin \frac{\beta}{2}$ | | 18) | Area of $\triangle ABC$ in | terms of measure | of its all sides is: | | | | (A) $\frac{1}{2}bc\sin\alpha$ | (B) $\frac{c^2 \sin \alpha \sin \alpha}{2 \sin \gamma}$ | $\frac{\sin \beta}{2}$ (C) $\frac{1}{2} ca \sin \beta$ | (D) $\sqrt{s(s-a)(s-b)(s-c)}$
(C) 2 (D) -2 | | 19) | $Tan(Tan^{-1}(-1)) =$ | | (A) - I $(B) 1 ($ | (D) -2 | | 20) | Solution set of sir | $1x = \frac{1}{2}$ is: | | | | | | 4 | $\left. \text{(C)} \left\{ \frac{\pi}{3}, \frac{4\pi}{3} \right\} \right.$ | (D) {0, π} | | | 100- | - TANO - AND - | 13(Obiv5 | (A)-2019(A)-25000 (MULTAN) | ## INTERMEDIATE PART-I (11th CLASS) #### MATHEMATICS PAPER-I GROUP-II TIME ALLOWED: 2.30 Hours SUBJECTIVE MAXIMUM MARKS: 80 NOTE: - Write same question number and its part number on answer book, as given in the question paper. ### SECTION-I Attempt any eight parts. $8 \times 2 = 16$ - (i) Find the multiplicative inverse of (-4, 7) - (ii) Simplify $(i)^{-3}$ - (iii) Simplify $\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)^3$ - (iv) Write down the power set of $\{a, \{b, c\}\}\$ - (v) Show that $p \to (q \lor p)$ is tautology or not. - (vi) For $A = \{1, 2, 3, 4\}$ find the relation $\{(x, y) | x + y < 5\}$ in A. - (vii) State any two properties of determinants. - (viii) Show that for a non-singular matrix A, $(A^{-1})^{-1} = A$ - (ix) Without expansion prove that $\begin{vmatrix} 1 & 2 & 3x \\ 2 & 3 & 6x \\ 3 & 9x \end{vmatrix} = 0$ - (x) Reduce $2x^4 3x^3 x^2 3x + 2 = 0$, into quadratic form. - (xi) Solve the equation $x^3 + x^2 + x + 1 = 0$ - (xii) Define exponential equation. 3. Attempt any eight parts. $8 \times 2 = 16$ - (i) Resolve $\frac{x^2+1}{(x+1)(x-1)}$ into partial fractions. - (ii) Define improper rational fraction. - (iii) For the identity $\frac{1}{(x+1)^2(x^2-1)} = \frac{A}{x-1} + \frac{B}{x+1} + \frac{C}{(x+1)^2} + \frac{D}{(x+1)^3}$ Calculate the values of A and D. - (iv) Write first four terms of the sequence $a_n = 3n 5$ - (v) Find the 13th term of the sequence x, 1, 2 x, 3 2x, ---- - (vi) How many terms of the series -7 + (-5) + (-3) + --- amount to 65? - (vii) Insert two G.Ms. between "2" and "16". - (viii) Write two relations between A, G, H, in which A = Arithmetic Mean, G = Geometric Mean, H = Harmonic Mean. - (ix) How many arrangements of the letters of the word "ATTACKED", taken all together, can be made? - (x) Prove the given formula for n = 1, 2 $1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^{n-1}} = 2\left[1 \frac{1}{2^n}\right]$ - (xi) Calculate (9.98)4 by means of binomial theorem. - (xii) If x is so small that its square and higher powers can be neglected, then show that $\frac{1-x}{\sqrt{1+x}} = 1 \frac{3}{2}x$ - (i) Prove that $\sec^2 A + \csc^2 A = \sec^2 A \csc^2 A$ where $A \neq \frac{n\pi}{2}$, $n \in \mathbb{Z}$ - (ii) Write two fundamental identities. - (iii) Show that $\cot^4 \theta + \cot^2 \theta = \csc^4 \theta \csc^2 \theta$ - (iv) Prove that $\tan(45^{\circ} + A) \tan(45^{\circ} A) = 1$ - (v) Express $\sin 5x + \sin 7x$ as a product. - (vi) Prove that $\frac{\sin A + \sin 2A}{1 + \cos A + \cos 2A} = \tan A$ - (vii) Write down domain and range of $y = \tan x$ - (viii) Find the area of the triangle ABC, given three sides a = 18, b = 24, c = 30 - (ix) Show that $r = (s a) \tan \frac{\alpha}{2}$ - (x) The area of triangle is 2437. If a = 79, and c = 97, then find angle β . - (xi) Show that $\cos(Sin^{-1}x) = \sqrt{1-x^2}$ - (xii) Solve the equation $\sin 2x = \cos x$ - (xiii) Define trigonometric equation. Give one example ## SECTION-II NOTE: - Attempt any three questions. $3 \times 10 = 30$ 5 5 - 5.(a) Show that the set $\{1, -1, i, -i\}$ is an abelian group under multiplication where $i^2 = -1$ 5 - (b) If $y = \frac{2}{3}x + \frac{4}{9}x^2 + \frac{8}{27}x^3 + \dots$ and $0 < x < \frac{3}{2}$, then show that $x = \frac{3y}{2(1+y)}$ - 6.(a) Prove that $\begin{vmatrix} b+c & a & a^2 \\ c+a & b & b^2 \\ a+b & c & c^2 \end{vmatrix} = (a+b+c)(a-b)(b \bigcirc (c-a)$ - (b) Find the probability that the sum of dots appearing in two successive throws of two dice is every time 7. - 7.(a) Use synthetic division to find the values of p and q if x + 1 and x 2 are the factors of the polynomial $x^2 + px^2 + qx + 6$ - (b) If x is so small that its cube and higher powers can be neglected, then show that $\sqrt{1 x 2x^2} \approx 1 \frac{1}{2}x \frac{9}{8}x^2$ - 8.(a) Prove that $\frac{\tan \theta + \sec \theta 1}{\tan \theta \sec \theta + 1} = \tan \theta + \sec \theta$ - (b) If α , β , γ are the angles of $\triangle ABC$ then prove that $\tan \frac{\alpha}{2} \tan \frac{\beta}{2} + \tan \frac{\beta}{2} \tan \frac{\gamma}{2} + \tan \frac{\gamma}{2} \tan \frac{\alpha}{2} = 1$ - 9.(a) Prove that $r_1 + r_2 + r_3 r = 4R$ - (b) Prove that $2 \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{7} = \frac{\pi}{4}$ | Pape | r Code | 2019 (| | | |-------|--|---|--|--| | Num | the second secon | INTERMEDIATE PA | 그 아이들에 들어 아이었다면서 하는데 그 때 | | | Note | | OBJECTIV s for each objective type que | MAXIMUM : estion as A, B, C and D. The | choice which you | | Cutti | ing or filling two or mor
n in objective type questi
not filled. Do not solve q
o.1 | e bubbles will result in zero
on paper and leave others b
juestions on this sheet of OE | | pt as many questions as
ded in case BUBBLES | | (1) | If $a > 0$ then: | (A) $2a < 0$ (B) $\frac{1}{a}$ | c < 0 (C) $-a > 0$ (D) |) - a < 0 | | (2) | | | (A) 4 (B) 16 (C) 8 | | | (3) | | lumn of a square matrix A ar
B) $ A < 0$ (C) $ A $ | | se | | (4) | | non-singular matrices then (A | | | | | (A) $A^{-1}B^{-1}$ (| B) $B^{-1}A^{-1}$ (C) BA | (D) AB | | | (5) | If $x^2 - 3 = 0$ then sum | of roots is: (A) Zer | ro (B) 3 (C) -3 (| D) 1 | | (6) | | | (A) -1 (B) $-i$ (C) |) I (D) ± I | | (7) | A fraction $\frac{N(x)}{D(x)}$ is ca | lled Proper Rational Faction | f: | | | | (A) Degree of $N(x) <$
(C) Degree of $N(x) \le$ | 시장면 (여러 등록 하면 어린 기계를 다시겠다는 생각이 어떻게 되었다.) | (B) Degree of $N(x) > Degree$
(D) Degree of $D(x) \le Degree$ | | | (8) | | ic series for which $ r < 1$, S | $S_n = $ where $n \to \infty$ | | | | (A) $\frac{a_1(1+r)}{1-r}$ (| B) $\frac{a_1}{1+r}$ (C) $\frac{a_1}{2r}$ | (D) $\frac{a_1}{1-r}$ | | | (9) | With usual notations, | $\sum_{k=1}^{n} k^{3} \text{ equal to:}$ | | | | | $(A) \frac{n(n+1)}{4} $ | B) $\frac{n(n+1)}{2}$ (C) $\left(\frac{n}{2}\right)$ | $\frac{(n+1)}{2} \begin{pmatrix} n & n & (n+1) \end{pmatrix}^2$ | | | (10) | How many ways 5 keys | can be arranged on a circular | key ring? (A) 12 (B) 5 | (C) 4 (D) 3 | | (11) | " P_r equals: | (A) $^{n}C_{r}$ (B) $r! \times ^{n}C_{r}$ | (C) $\frac{1}{r!} \times {}^{n}C_{r}$ (D) r | × "C, | | (12) | | +x)'', the sum of binomial co | | | | | (A) n | B) $n+1$ (C) 2^n | (D) 2 ⁿ⁻¹ | | | (13) | $n! > n^2$ is true for integ | ral value of n : (A) n | = 3 (B) $n = 4$ (C) $n = 2$ | (D) $n = 1$ | | (14) | The vertex of an angle i | n standard form is at: (A | (1,0) (B)(0,1) (C) (| I, I) (D) (0.0) | | (15) | $\sin(\alpha + \beta) + \sin(\alpha - \beta)$
(A) $2\sin\alpha\cos\beta$ (B) | β) equals:
B) $2\cos\alpha\sin\beta$ (C) $\sin\alpha$ | $\alpha \cos \beta$ (D) $\sin \alpha$ | | | (16) | Domain of cosx functi | on is: (A) W | (B) N (C) R (| D) Z | | (17) | Circle which passes thr | ough vertices of a triangle is | | | | (18) | With usual notations, | $\frac{e^2 \sin \beta \sin \alpha}{2 \sin \gamma}$ is equal to: | (A) Δ (B) Δ^2 (C) $\frac{\Delta}{2}$ | (D) $\frac{\Delta^2}{2}$ | | (19) | $Tan^{-1}\frac{1}{2} + Tan^{-1}\frac{1}{3}$ equ | als: (A) $Tan^{-1}3$ (E | 3) $Tan^{-1}2$ (C) $Tan^{-1}1$ | (D) Tan ⁻¹ (-1) | | (20) | Solution of equation tar | $ax = \frac{1}{\sqrt{3}} \text{ is in:}$ | | | | | (A) I and II quadrant | | (C) II and IV quadrant (D)
(Obj)(☆)-2019(A)-13000 (M) | | # BOARD OF INTERMEDIATE AND SECONDARY EDUCATION, MULTAN OBJECTIVE KEY FOR INTERMEDIATE ANNUAL EXAMINATION, 2019 | Mathematics Session | Session: | Name of Subject: Mathematics | |---------------------|----------|------------------------------| | Sessi Sessi | Sessi | T-IDCITCITION ICS | - Session: ANNUA L Group: 1st Group: 2nd | Q. | Paper Code | | Paper Code | Paper Code | |-----|------------|----------|------------|------------| | Nos | 2191 | 2193 | 2195 | 2197 | | 1 | В | C | B | C | | 2 | C | B | C | C | | 3 | Α | D | A | A | | 4 | В | A | A | B | | 5 | C | 3 | С | c | | 6 | C | B | D | A | | 7 | AB | C | 0 | D | | 8 | В | A | C | c | | 9 | C | B | c | C
D | | 10 | A
D | C | B | c | | 11 | D | C | D | E | | 12 | C | A | A | oc | | 13 | D | B | B | B | | 14 | D C C C B | C | B | DS | | 15 | C | A | c | A | | 16 | C | D | A | B | | 17 | В | C | B | B | | 18 | D | D | C | C | | 19 | A | C | C | A | | 20 | В | C | A | B | | Q. | Paper Code | Paper Code | Paper Code | Paper Code | |-----|------------|------------|------------|------------| | Nos | 2192 | 2194 | 2196 | 2198 | | 1 | Ð | c | C | A | | 2 | В | Α | Α | B | | 3 | С | | B | A | | 4 | В | A
C | C | D | | 5 | Α | B | C
B | C | | 6 | В | D | D | A | | 7 | Α | B | A | B | | 8 | D | C | c 1 | C | | 9 | C | B | Α | B | | 10 | A | A | A | D | | 11 | A
B | В | C | A | | 12 | C | A | B | c | | 13 | β | D | D | A | | 14 | D | C | B | A | | 15 | A | A | C | c | | 16 | C | 13 | B | В | | 17 | A | C | A | D | | 8 | A | B | B | B | | 9 | C | D | A | C | | 0 | В | A | D | B |